If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x-384=0
a = 4; b = 20; c = -384;
Δ = b2-4ac
Δ = 202-4·4·(-384)
Δ = 6544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6544}=\sqrt{16*409}=\sqrt{16}*\sqrt{409}=4\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{409}}{2*4}=\frac{-20-4\sqrt{409}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{409}}{2*4}=\frac{-20+4\sqrt{409}}{8} $
| (x+3)*(x+2)=24 | | 15k^2+k-80=0 | | 2x+2+3x-6=x+3 | | 20x-15x-2x-x+4x=6 | | x+1/3=1/3x+2/3 | | 3w+18=51 | | 7x-12=-8 | | M^3+3m=70 | | x=145.42+(x*0.4555) | | 8u-(-2u)=20 | | 2x+25+86=180 | | 14g-5g-9g+5g=20 | | 6x-5=2x-43 | | 8c-5c+3c-c-3c=10 | | x=140+(x*0.4555) | | 1/2x-2x=3-5x | | (63-x)=180 | | 2x-40=140 | | x+.2x=31 | | 20-3x=-4(x-4) | | 6r-r-2r+3r-3r=18 | | x-5x/4+3/4=3x/8-3x/2-7/8 | | x=100+(x*0.1) | | 11x+4x-4x-5x=18 | | 1/2x+2=-5/2x | | (72+2x)=180 | | 5m-3m+m=6 | | X+99=4xX= | | 14h-12h=18 | | 2(2x-1)+x=68 | | -4(x+2)=-8+4x | | 2+3x=63 |